

## Sampling-based Contact-rich Motion Control

Libin Liu\* KangKang Yin† Michiel van de Panne‡ Tianjia Shao\* Weiwei Xu†

 \* Tsinghua University † Microsoft Research Asia ‡ University of British Columbia









#### 4/38

## Motivation

### Physically-plausible motion reconstruction

Input







Output



#### Retargeting to new characters



**Direct tracking** 

Our open-loop control 5/38



#### Retargeting to new environments





### Synthesis of difficult-to-capture motions



## Outline

- Motivation
- Related Work
- Control Construction
  - Trajectory-based sampling
  - Practical implementations
  - Trajectory-free sampling
- Results
- Discussion



## **Related Work**

- Motor Control and Contact Dynamics [Kawato 99, Jordan and Wolpert 99, Brubaker et al. 09]
- Motion Planning

[Kavraki et al. 96, LaValle and Kuffner 00, Choi et al. 03, Yamane et al. 04]

Sampling in Animation

[Sims 94, Hodgins and Pollard 97, Twigg and James 07, Sok et al. 07, Wang et al. 09, Wampler and Popović 09]





## Outline

- Motivation
- Related Works
- Control Construction
  - Trajectory-based sampling
  - Practical implementations
  - Trajectory-free sampling
- Results
- Discussion



## **Simulation Basics**

• PD servo

$$\tau = k_p \left( \widetilde{\theta} - \theta \right) - k_d \left( \dot{\theta} \right)$$

• Open Dynamics Engine v0.11



# Trajectory-based sampling **Sampling**

--->

t

 $t + \Delta t$ 





# Trajectory-based sampling **Steps**





## Outline

- Motivation
- Related Works
- Control Construction
  - Trajectory-based sampling
  - Practical implementations
  - Trajectory-free sampling
- Results
- Discussion



# Practical Implementations Sample generation

• Sampling window size



- Noise level
- Joint activeness
- Stability of motion dynamics

### Practical Implementations Feedforward torques





# Practical Implementations Sampling time step

• Small vs. Large

• Uniform vs. Semantic



### Practical Implementations Simulations in Parallel



• Master-worker model



# Trajectory-based sampling Sample Cost Evaluation

$$E = w_p E_p + w_r E_r + w_e E_e + w_b E_b$$

• Pose Control :

$$E_p = \frac{1}{n} \sum_{i=1}^n w_i (d_q(\mathbf{q}_i, \tilde{\mathbf{q}}_i) + 0.1 * d_v(\boldsymbol{\omega}_i, \tilde{\boldsymbol{\omega}}_i))$$

- Root Control:  $E_r = d_q(\mathbf{q}_{root}, \tilde{\mathbf{q}}_{root}) + 0.1 * d_v(\omega_{root}, \tilde{\omega}_{root})$
- End-effector Control:

$$E_e = \frac{1}{k} \sum_{i=1}^k d_s(\mathbf{p}_{iy}, \tilde{\mathbf{p}}_{iy})$$

• Balance Control:

$$E_b = \frac{1}{hk} \sum_{i=1}^k (d_v(\mathbf{r}_{ci} - \tilde{\mathbf{r}}_{ci})) + 0.1 * d_v(\mathbf{v}_{CoM}, \tilde{\mathbf{v}}_{CoM})$$



## Outline

- Motivation
- Related Works
- Control Construction
  - Trajectory-based sampling
  - Practical implementations
  - Trajectory-free sampling
- Results
- Discussion



### Idling Trajectory-free Sampling





# Idling Dynamic RRT: DoF pruning





# Idling Dynamic RRT: Space Pruning





## Outline

- Motivation
- Related Works
- Control Construction
  - Trajectory-based sampling
  - Practical implementations
  - Trajectory-free sampling
- Results
- Discussion



## Results **Performance**

| Trial         | Duration (s) | Reconstruction time (s) |
|---------------|--------------|-------------------------|
| walk          | 5.2          | 143                     |
| run           | 2            | 51                      |
| sideways roll | 3            | 78                      |
| forward roll  | 3            | 78                      |
| backward roll | 2.1          | 57                      |
| get-up        | 3.5          | 93                      |
| kip-up        | 6.6          | 184                     |

1400 samples for each iteration with success rate > 80% ~25 times slower than real time on cluster of 80 cores

## Results Control Reconstruction



#### **Control Reconstruction**



### Results Motion Transformation



#### **Motion Transformation**

### Results: Motion Retargeting



#### **Motion Retargeting**



### Results Trajectory-free Control Construction

#### Trajectory-free Control Construction

# Results Motion Composition



#### Motion Composition (Hybrid approach)

## Outline

- Motivation
- Related Works
- Control Construction
  - Trajectory-based sampling
  - Practical implementations
  - Trajectory-free sampling
- Results
- Discussion



## **Advantages of Sampling**



- Derivative-free
- General
- Robust wrt. local minima
- Easy to parallelize

## Limitations



- Robustness of Reconstruction: <100%
- Robustness of Control: open-loop
- Generalization: trajectory-tracking nature
- Smoothness: can be jerky

## Conclusions



- Sampling-based reconstruction method general, robust, parallelizable
- Contact-rich tasks get-up, rolling, idling
- Unified framework
   inverse dynamics. mc

inverse dynamics, motion transformation and retargeting

### Acknowledgement



- Our mocap subjects
- Organizations and authors who generously shared their mocap data
- Xiao Liang, Teng Gao, Kevin Loken



## Thank you